Last year we embarked on a trial of aquaponics in a domestic setting, as part of a PhD undertaken by John Grant of Sheffield Hallam University. Our related blogs are not a guide in themselves, but perhaps help fill some of the gaps we found in existing literature. If you want an introductory guide we recommend Sylvia Bernstein’s Aquaponic Gardening.

This blog follows up on our previous post with a review of our first 6 weeks of hosting fish, and the snags we had with our initial build. There was a gap of some months as having built the physical system we were nervous of the temperatures that could be reached in our polytunnel and so waited until the summer so we could monitor temperatures before introducing fish to the system.

The build

Our first visit to the polytunnel after the winter break was a bit of a shock, as the foundations for the water tank had subsided. This meant we had to empty the water tank and dig out the earth around the sump tank to the extent that we could embed boards to stop the earth from collapsing against the tank.

Lesson learnt: if placing the fish tank over an IBC sump tank, box in the sump tank – however firm you think the ground is. We’d also suggest that the top water tank is filled some time before adding fish, if you are not building on a very firm base. The fix for our problem would have been a lot harder if we had already put fish into the top tank, and very disheartening if cycling had already started.

Having plumbed the growing beds’ inlets and outlets we added water to check the autosipons worked. It is worth doing this without the clay balls in place. We also discovered a leak in one of the tanks at this point.

Lesson learnt: It is much easier to fix these things before the clay balls are added.

Down the track we have realised that it will be difficult for us to alter the height of the outlet pipe that sits up in the tank. Ours is a single piece of pipe down to the junction with the outlet pipe that returns to the sump tank.

Lesson learnt: Plumb the system so that the pipe within the tank can be removed.

We have also realised that whilst we take water from close to the top of the fish tank, this can still carry a fair amount of gunk (technical term). It is likely that this affects the water flow.

Lesson learnt: Install a settling tank in the plumbing immediately after the fish tank.

Which fish?

Originally we had hoped to stock Tilapia or trout, but were concerned about the need to heat or cool the tanks. Having reviewed various guides it became clear that carp were one of the most robust fish when it comes to temperature range and fluctuations. And, as we have a lake full of carp on our doorstep, carp it was. We don’t normally eat carp because it is very muddy when fished from the lake, but we realised that keeping it in the aquaponics fish tank offers a way of cleaning out their systems,and perhaps make them more appetising.

We spent a significant amount of time trying to source organic fish food but it seems to be available solely to large scale fish farms. The first batch was a floating feed from a local ‘World of Water‘, which we have followed up with a slow sinking feed for coarse fish from Skretting. We are also considering how we can farm duckfeed as a high-protein green for them.

Lesson learnt: We recommend a floating feed. Whilst carp are, naturally, bottom-feeders, they were happy eating from the surface after 1-2 days, and this gives you a chance to check on them.

Whilst considering the animal kingdom, it is worth noting that we found a frog in the sump tank one day. It is worth ensuring that the tank is sealed, and/or providing a route out for anything that decides to go for a swim.

Cycling the system

We used the Murray- Hallam cycling technique to start the system off. This means adding liquid seaweed and adding plants, and then waiting for 2 weeks before adding fish. There was concern about the pH of the water, which was higher than the ‘ideal’ range given in the literature. However, having tested the pH of the lake from which the fish would be taken, we realised they were the same, so no action was taken on its acidity.  This has dropped over time.

We were also able to introduce some rocks from the lake into the growing beds. They carry ‘healthy bacteria’ that would help speed up the cycling process.

3 solar powered oxygenators were used over the summer, which are now powered by the mains as daylight hours start to reduce. We cannot currently monitor oxygen levels in the water, but hope to get a more efficient approach to the energy consumption in future.

The rationale for this approach was that the water would be prepared for the fish. However, 2 weeks into their residence we found a number dead. This hit us hard as the whole idea of this approach had been to avoid stressing the fish. It appears to have happened because the stocking levels were too high, and they received more food than necessary due to some enthusiastic helpers. We reduced the fish levels to a quarter of that suggested in the literature, and their feed is also given at a lower rate than suggested. A month on the pH, Ammonia, Nitrite and Nitrate levels remain spot on.

Lesson learnt: Use the Murray-Hallam method but introduce the fish very gradually, and give a single person responsibility for feeding. It is better to lose some early plants than put the fish through stress. 

Data monitoring

We are yet to start the formal monitoring of the system but readings were taken daily during cycling and the first two weeks of the fish residency. Now the system is up to speed we are testing pH, ammonia, nitrite and nitrate levels on a weekly basis. We found (but don’t know if this is the norm) that the Nitrite level rose and fell very quickly, and the Nitrate level rose to 80ppm on the day after the fish were introduced and haven’t fallen much since.

We also visually check the water levels and flow rates in the tanks and from the outlets into the grow beds. We have found that we have to add around 300 litres of water on a fortnightly basis over the summer, suggesting that evaporation is more of an issue than we expected.

Our greatest concern is the temperature, as this is very difficult to control, and there is no data available on this for our particular site (a polytunnel in the UK). The good news is that the water appears to limit temperature swings with its highest temperatures on the hottest days reaching 5 degrees less than the outside air, and staying 5 degrees warmer than the outside air overnight. It is likely that the water will provide a similar cushioning effect over winter, and it is hoped we will have full temperature monitoring to provide more information to protect our fish, and help others with their aquaponics plans.


First plants go in, and visibly struggle to find nutrients

The planting of the grow beds was circumstantial rather than planned. A tomato cutting or two have taken hold surprisingly quickly and are now fruiting. Some supermarket coriander plants thrived for around 6 weeks but didn’t survive the first cold night of the autumn, whilst some strawberry plants surprisingly fruited within weeks. Spare pea seedlings grew, but failed to fruit. And of the greens, the lettuces have taken well but various brassicas have been eaten by unseen bugs (or slugs?).

At this point it seems that the output is different to that achieved in soil. Some leaves, like spinach and mizuna, are growing well and deliver on taste and texture; but other lettuces are just too limp. Next year we will need to more consciously trial what works and what doesn’t.

And finally, perhaps most exciting for a beginner, that thing where people just scatter seeds into the grow beds – it works! In early August, in a rush before going on holiday, I sprinkled a handful of dwarf peas into the bed and covered it with a single layer of clay balls. Those plants are now growing nicely and producing flowers. Light levels may now be too low to deliver many peas this year, but they may well survive the winter ready to grow on in the Spring.

Date posted: September 15, 2017 | Author: | 1 Comment »

Categories: Food

Visitors to Hockerton's ecohomesWe have cut the cost of our public tours that we host six times a year to our ecohomes. This is thanks to an EnviroGrant for £990 from Veolia (Nottinghamshire County Council’s waste contractors),

The tours are a unique opportunity to visit a co-housing development that has shown zero carbon housing is not only possible, but also desirable. A resident takes visitors on a walk around the 15 acre site to look at how we manage our needs in terms of food, energy, water and transport. The highlight is a visit to one of the five private ecohomes on the development where you will see, and feel, the difference of the homes’ design. It uses the warmth of the sun and the fabric of the building to maintain a comfortable temperature year-round, whilst also maximising sunlight and providing flexible living space.

Tickets have been reduced to £5 for people outside the local area, and remain £2.50 for NG25 residents and free for our close neighbours in Hockerton. The next tour is on 4 November 2017. The fund will support tours up to September 2018, and places are limited so please book your place now.
Eventbrite - Sustainable Living

The EnviroGrant Scheme is run by Veolia and offers a helping hand to a wide range of grassroots community, voluntary and grassroots projects. Over the years support has been granted for a range of projects such as providing outside classrooms, supporting forest schools, enabling recyclable material and updcycling workshops to take place, providing recycling bins at a youth centre; and assisting in the creation of numerous school gardens and biodiversity projects.

We remain on the lookout for ways to support schools and universities with the costs of visits, please let us know if you are aware of any such funding.

Date posted: September 14, 2017 | Author: | No Comments »

Categories: Uncategorized

Over the past two years we’ve hosted more school trips. From mapping natural resources to debating political issues, our tours can be adapted to suit any geographical or sociological aspect of sustainability.

On a visit, a resident shows small groups of students round. We show them how we harvest rainwater, generate green energy, and how we designed and built our homes to be as energy efficient as possible. This allows for a two-way conversation, and to explore the areas that the students are most interested in.

Alongside the formal educational element, we see the children’s understanding of a ‘good life’ being challenged and informed. We often see and hear attitudes change in real time, as they take away the conclusion that to live sustainably is not to go without, but is to live with… with comfort, with zero carbon, and with cooperation in the community.

The feedback from the students of Carlton Le Willows says it all:

‘The place is absolutely awesome, it is the future’.
“I think the Project was a great way to show how people can still live ordinary lives within a community without spending too much money but still doing great things for the environment and building a better more promising future for our relatives to come”
‘I thought it was a very educational trip and that it is amazing what some people can do!’

We make school trips to Hockerton Housing Project as accessible as possible and encourage you to contact us to set a visit up.

Date posted: August 25, 2017 | Author: | No Comments »

Categories: education

Aquaponics /akwəˈpɒnɪks/: a system that combines aquaculture (the raising of aquatic animals) and hydroponics (cultivating plants in water) in a symbiotic environment.

Earlier this summer we were contacted by John Grant of Sheffield Hallam University to ask if we were interested in participating in his PhD research into the domestic application of aquaponics. We were, due to…

  • Desire for water efficiency – aquaponics counter-intuitively is claimed to use a fraction of the water used in conventional food production
  • Low maintenance – aquaponics offers automated water provision and no weeding
  • Problems with slugs decimating conventional crops
  • High yield and the potential to raise different fish
  • Concern about soil degradation, and interest in alternatives
  • Opportunity to reuse surplus food-grade IBCs

We are also able to test a system in a domestic setting, whilst also demonstrating it to visitors on our public and educational tours.


John visited us in July 2016 to consider site options. The factors considered were:

  • accessibility, as the system will need checking each day to ensure fish welfare
  • orientation, to maximise light
  • existing shelter, or potential cost of a new shelter
  • access to water and power
  • available IBCs, which had previously been used to store water on a smallholding.

The key factor was the availability of space in an existing polytunnel. This is about 200m from the homes and offers good light. Access to filtered water and to power had to be installed, and the challenge remains to stabilise temperatures to ensure fish welfare.

System design and build

Tank preparation 

Two food grade IBC tanks were used:

  • one for the sump tank (700l) and one for a grow bed (300l)
  • the other provided two grow beds

Cutting IBCs with a thin metal angle grinder blade proved surprisingly efficient and produced a clean smooth edge on the plastic. The alternative using a jigsaw would have been more difficult to control on the bendy sides and produced a rougher cut edge. There seemed to be the possibility of fine plastic dust created by the grinding although mostly the plastic melted when cut and a dust mask was worn to protect against this, along with ear defenders and goggles. The containers were swept and washed to remove this “dust”.

Measuring to create an accurate cutting line was difficult with the slightly rounded shape of the IBC. Best estimates need to be used.

Metal work cut easily and it took about 5 hours for all cutting of the IBCs. Creating a lid for the sump tank out of spare bits took about 1 hour. This minimized waste materials from adapting the IBCs.

Sump tank

Fish health and welfare is a key requirement and has driven the design. To keep the water cool, the sump tank has been sunk into the earth floor of the polytunnel. Whilst the temperature of the soil surrounding the tank will vary with the seasons, it will remain cooler than the air temperature in summer and warmer in winter. The degree of difference will be monitored and recorded as part of this project. There is the additional benefit of keeping the sump tank dark to prevent (or at least slow) algae growth. It was for this reason that we chose a dark tank, when initally we thought a light tank could be useful to mark water levels.

The main challenge with burying the sump tank is the pressure of soil on the sides of the plastic part of the IBC. This is averted to some extent by the use of metal panels in the centre of each side.

An inverted growbed was used to protect the sump tank whilst the soil was tamped down, as it protected the water from soil. This was then replaced with a lid, made from a timber frame and the ‘waste’ from the IBC that had been cut to provide two growbeds.

Fish tank

The fish tank is located over the sump tank. The factors considered as part of this decision are access to the fish tank, the simplicity of plumbing, and temperatures. These two tanks are placed next to the doorway with an area in which to put a small table on which to keep records for research. This area is slightly cooler than the centre of the polytunnel, and it is (in broad terms) preferable to give warmer temperatures to the grow beds and a cooler temperature to the fish tank.

The fish tank is offset so that dense concrete blocks can take the weight of the tank on 3 sides, and to allow access to the sump tank (allowing for the potential need to remove and maintain/replace the pump). This access is on the grow bed side of the sump and fish tanks to reduce the complexity of plumbing. The tank is being filled gradually both to limit impact on the availability of water to HHP residents, and to monitor the stability and level of the fish tank.

The fish tank is dark as this is the preference for the fish under consideration, but there is the risk that this will increase the temperature of the water. Another way to manage the temperature is to insulate the tank, and we are considering the use of sheepswool from the HHP flock.

Grow beds

The next stage is to install the grow beds. This needs to take into account:

  • Accessibility for planting, including the rinsing of roots, and harvesting
  • Plumbing – length and complexity; any impact on accessibility
  • Shading of other planting areas

The two options considered were linear and keyhole.

Keyhole: a permaculture approach which minimises path to bed ratio, reducing the distance travelled to work on a bed. This has a particular value with aquaponics as plant roots must be cleaned prior to planting. Plumbing would be to the rear of the beds, with ease of access dependent on the distance of the beds from the polytunnel wall. Planters can be placed at the end of the paths, and potentially incorporated into the aquaponics system at a later date. Additional beds would be added in a similar fashion.

Linear: A more efficient approach in terms of materials used as plumbed routes are marginally shorter (the above diagram is not to scale). The pipework from the fish tank to the growbeds, and from the growbeds to the fishtank each have one less joint. It also allows for planting on a 20cm strip on the south of the polytunnel. The access path will need to be wider than for the ‘keyholes’ as it will need to allow for a working area to clean roots. Additional beds could leave a break to allow easier access to the south edge, with plumbing bridging any gap.

The impact on ease of use will only be fully understood from practice.

Date posted: December 15, 2016 | Author: | No Comments »

Categories: Food

Over the past 18 years we’ve hosted thousands of students of energy, water, and environmental sciences but increasing number of visits from other strands of academia is both heartening and fascinating.

Recently we hosted Nottingham University’s School of Mathematics, as part of their work on MASS: ‘Modelling and Analytics for a Sustainable Society‘, and are delighted to hear we were cause for both inspiration and optimism.

“HHP showed me that I was wrong and it is possible to live in a (much more) sustainable way without diminishing our quality of life. I would even argue that the ‘Hockerton lifestyle’ might even be far more enjoyable than the busy, consumption-focused lifestyle most of us enjoy”

“Highlights on the day included “the house tour as we got to see how it all came together in reality”,  “the aquaponics, as this was not something I was aware of before, the conservative and careful use of water (e.g. less filtered water for showering and the toilet), their own water filtration systems and being off the grid for water”.

“[we] were all surprised at the toasty warm floor despite the absence of any central or secondary heating!”

You can read their views in full here, or contact us to find out how we can bring your area of work or study to life for your students, colleagues or clients.

Date posted: October 27, 2016 | Author: | No Comments »

Categories: Eco homes Renewable energy Water systems

Want to look around? Come and visit us! Dismiss